Advertisement

Association Between Abnormal Fetal Head Growth and Autism Spectrum Disorder

Published:December 27, 2020DOI:https://doi.org/10.1016/j.jaac.2020.11.019

      Objective

      Despite evidence for the prenatal onset of abnormal head growth in children with autism spectrum disorder (ASD), studies on fetal ultrasound data in ASD are limited and controversial.

      Method

      We conducted a longitudinal matched case-sibling−control study on prenatal ultrasound biometric measures of children with ASD, and 2 control groups: (1) their own typically developed sibling (TDS) and (2) typically developed population (TDP). The cohort comprised 528 children (72.7% male), 174 with ASD, 178 TDS, and 176 TDP.

      Results

      During the second trimester, ASD and TDS fetuses had significantly smaller biparietal diameter (BPD) than TDP fetuses (adjusted odds ratio for the z score of BPD [aORzBPD] = 0.685, 95% CI = 0.527−0.890, and aORzBPD = 0.587, 95% CI = 0.459−0.751, respectively). However, these differences became statistically indistinguishable in the third trimester. Interestingly, head biometric measures varied by sex, with male fetuses having larger heads than female fetuses within and across groups. A linear mixed-effect model assessing the effects of sex and group assignment on fetal longitudinal head growth indicated faster BPD growth in TDS versus both ASD and TDP in male fetuses (β = 0.084 and β = 0.100 respectively; p < .001) but not in female fetuses, suggesting an ASD–sex interaction in head growth during gestation. Finally, fetal head growth showed conflicting correlations with ASD severity in male and female children across different gestation periods, thus further supporting the sex effect on the association between fetal head growth and ASD.

      Conclusion

      Our findings suggest that abnormal fetal head growth is a familial trait of ASD, which is modulated by sex and is associated with the severity of the disorder. Thus, it could serve as an early biomarker for ASD.

      Graphical abstract

      Key words

      To read this article in full you will need to make a payment

      References

        • Kim Y.S.
        • Leventhal B.L.
        Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders.
        Biol Psychiatry. 2015; 77: 66-74
        • Wang C.
        • Geng H.
        • Liu W.
        • Zhang G.
        Prenatal, perinatal, and postnatal factors associated with autism.
        Medicine (Baltimore). 2017; 96e6696
        • Stoner R.
        • Chow M.L.
        • Boyle M.P.
        • et al.
        Patches of disorganization in the neocortex of children with autism.
        N Engl J Med. 2014; 370: 1209-1219
        • Kemper T.L.
        • Bauman M.
        Neuropathology of Infantile Autism.
        J Neuropathol Exp Neurol. 1998; 57: 645-652
        • Courchesne E.
        • Campbell K.
        • Solso S.
        Brain growth across the life span in autism: age-specific changes in anatomical pathology.
        Brain Res. 2011; 1380: 138-145
        • Courchesne E.
        • Mouton P.R.
        • Calhoun M.E.
        • et al.
        Neuron number and size in prefrontal cortex of children with autism.
        JAMA. 2011; 306: 2001
        • Casanova M.F.
        • van Kooten I.A.J.
        • Switala A.E.
        • et al.
        Minicolumnar abnormalities in autism.
        Acta Neuropathol. 2006; 112: 287-303
        • Courchesne E.
        • Gazestani V.H.
        • Lewis N.E.
        Prenatal origins of ASD: the when, what, and how of ASD development.
        Trends Neurosci. 2020; 43: 326-342
        • Shen M.D.
        • Nordahl C.W.
        • Li D.D.
        • et al.
        Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2–4 years: a case-control study.
        Lancet Psychiatry. 2018; 5: 895-904
        • Sacco R.
        • Gabriele S.
        • Persico A.M.
        Head circumference and brain size in autism spectrum disorder: a systematic review and meta-analysis.
        Psychiatry Res Neuroimaging. 2015; 234: 239-251
        • Redcay E.
        • Courchesne E.
        When is the brain enlarged in autism? A meta-analysis of all brain size reports.
        Biol Psychiatry. 2005; 58: 1-9
        • Courchesne E.
        Evidence of brain overgrowth in the first year of life in autism.
        JAMA. 2003; 290: 337
        • Hazlett H.C.
        • Poe M.
        • Gerig G.
        • et al.
        Magnetic resonance imaging and head circumference study of brain size in autism.
        Arch Gen Psychiatry. 2005; 62: 1366
        • Schumann C.M.
        • Bloss C.S.
        • Barnes C.C.
        • et al.
        Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism.
        J Neurosci. 2010; 30: 4419-4427
        • Hazlett H.C.
        • Gu H.
        • Munsell B.C.
        • et al.
        Early brain development in infants at high risk for autism spectrum disorder.
        Nature. 2017; 542: 348-351
        • Piven J.
        • Arndt S.
        • Bailey J.
        • Andreasen N.
        Regional brain enlargement in autism: a magnetic resonance imaging study.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 530-536
        • Brambilla P.
        • Hardan A.
        • di Nemi S.U.
        • Perez J.
        • Soares J.C.
        • Barale F.
        Brain anatomy and development in autism: review of structural MRI studies.
        Brain Res Bull. 2003; 61: 557-569
        • Surén P.
        • Stoltenberg C.
        • Bresnahan M.
        • et al.
        Early growth patterns in children with autism.
        Epidemiology. 2013; 24: 660-670
        • Deutsch C.K.
        • Joseph R.M.
        Brief report: cognitive correlates of enlarged head circumference in children with autism.
        J Autism Dev Disord. 2003; 33: 209-215
        • Bedford S.A.
        • Park M.T.M.
        • Devenyi G.A.
        • et al.
        Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder.
        Mol Psychiatry. 2020; 25: 614-628
        • Loomes R.
        • Hull L.
        • Mandy W.P.L.
        What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis.
        J Am Acad Child Adolesc Psychiatry. 2017; 56: 466-474
        • Battle D.E.
        Diagnostic and Statistical Manual of Mental Disorders (DSM).
        CoDAS. 2013; 25: 191-192
        • Lai M.-C.
        • Lombardo M.V.
        • Auyeung B.
        • Chakrabarti B.
        • Baron-Cohen S.
        Sex/gender differences and autism: setting the scene for future research.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 11-24
        • Bloss C.S.
        • Courchesne E.
        MRI neuroanatomy in young girls with autism.
        J Am Acad Child Adolesc Psychiatry. 2007; 46: 515-523
        • Schumann C.M.
        • Barnes C.C.
        • Lord C.
        • Courchesne E.
        Amygdala enlargement in toddlers with autism related to severity of social and communication impairments.
        Biol Psychiatry. 2009; 66: 942-949
        • Ecker C.
        • Andrews D.S.
        • Gudbrandsen C.M.
        • et al.
        Association between the probability of autism spectrum disorder and normative sex-related phenotypic diversity in brain structure.
        JAMA Psychiatry. 2017; 74: 329
        • Fulceri F.
        • Guzzetta A.
        • Athanasiadou A.
        • Iaconianni L.
        • Scattoni M.L.
        Antenatal ultrasound value in risk calculation for autism spectrum disorder: a systematic review to support future research.
        Neurosci Biobehav Rev. 2018; 92: 83-92
        • Hobbs K.
        • Kennedy A.
        • DuBray M.
        • et al.
        A retrospective fetal ultrasound study of brain size in autism.
        Biol Psychiatry. 2007; 62: 1048-1055
        • Bonnet-Brilhault F.
        • Rajerison T.A.
        • Paillet C.
        • et al.
        Autism is a prenatal disorder: evidence from late gestation brain overgrowth.
        Autism Res. 2018; 11: 1635-1642
        • Whitehouse A.J.O.
        • Hickey M.
        • Stanley F.J.
        • Newnham J.P.
        • Pennell C.E.
        Brief report: a preliminary study of fetal head circumference growth in autism spectrum disorder.
        J Autism Dev Disord. 2011; 41: 122-129
        • Unwin L.M.
        • Maybery M.T.
        • Murphy A.
        • et al.
        A prospective ultrasound study of prenatal growth in infant siblings of children with autism.
        Autism Res. 2016; 9: 210-216
        • Blanken L.M.E.
        • Dass A.
        • Alvares G.
        • et al.
        A prospective study of fetal head growth, autistic traits and autism spectrum disorder.
        Autism Res. 2018; 11: 602-612
        • La Batide-Alanore A.
        Familial aggregation of fetal growth restriction in a French cohort of 7,822 term births between 1971 and 1985.
        Am J Epidemiol. 2002; 156: 180-187
        • Sandin S.
        • Lichtenstein P.
        • Kuja-Halkola R.
        • Larsson H.
        • Hultman C.M.
        • Reichenberg A.
        The familial risk of autism.
        JAMA. 2014; 311: 1770
        • Schwärzler P.
        • Bland J.M.
        • Holden D.
        • Campbell S.
        • Ville Y.
        Sex-specific antenatal reference growth charts for uncomplicated singleton pregnancies at 15-40 weeks of gestation.
        Ultrasound Obstet Gynecol. 2004; 23: 23-29
        • Meiri G.
        • Dinstein I.
        • Michaelowski A.
        • et al.
        Brief report: the Negev Hospital-University-Based (HUB) Autism Database.
        J Autism Dev Disord. 2017; 47: 2918-2926
        • Bartholomeusz H.H.
        • Courchesne E.
        • Karns C.M.
        Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults.
        Neuropediatrics. 2002; 33: 239-241
        • Hadlock F.P.
        • Deter R.L.
        • Harrist R.B.
        • Park S.K.
        Estimating fetal age: computer-assisted analysis of multiple fetal growth parameters.
        Radiology. 1984; 152: 497-501
        • Hadlock F.
        • Deter R.
        • Harrist R.
        • Park S.
        Fetal abdominal circumference as a predictor of menstrual age.
        Am J Roentgenol. 1982; 139: 367-370
        • Hadlock F.P.
        • Deter R.L.
        • Harrist R.B.
        • Park S.K.
        Fetal biparietal diameter: a critical re-evaluation of the relation to menstrual age by means of real-time ultrasound.
        J Ultrasound Med. 1982; 1: 97-104
        • Hadlock F.
        • Deter R.
        • Harrist R.
        • Park S.
        Fetal head circumference: relation to menstrual age.
        Am J Roentgenol. 1982; 138: 649-653
        • Eklöf E.
        • Mårtensson G.E.
        • Ådén U.
        • Padilla N.
        Reduced structural brain asymmetry during neonatal life is potentially related to autism spectrum disorders in children born extremely preterm.
        Autism Res. 2019; 12: 1334-1343
        • Padilla N.
        • Eklöf E.
        • Mårtensson G.E.
        • Bölte S.
        • Lagercrantz H.
        • Ådén U.
        Poor brain growth in extremely preterm neonates long before the onset of autism spectrum disorder symptoms.
        Cereb Cortex. 2017; 27: 1245-1252
        • Dinstein I.
        • Shelef I.
        Anatomical brain abnormalities and early detection of autism.
        Lancet Psychiatry. 2018; 5: 857-859
        • Hoekstra R.A.
        • Bartels M.
        • Verweij C.J.H.
        • Boomsma D.I.
        Heritability of autistic traits in the general population.
        Arch Pediatr Adolesc Med. 2007; 161: 372
        • Chaste P.
        • Klei L.
        • Sanders S.J.
        • et al.
        Adjusting head circumference for covariates in autism: clinical correlates of a highly heritable continuous trait.
        Biol Psychiatry. 2013; 74: 576-584
        • Wu H.
        • Li H.
        • Bai T.
        • et al.
        Phenotype-to-genotype approach reveals head-circumference-associated genes in an autism spectrum disorder cohort.
        Clin Genet. 2020; 97: 338-346
        • Korevaar T.I.M.
        • Muetzel R.
        • Medici M.
        • et al.
        Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study.
        Lancet Diabetes Endocrinol. 2016; 4: 35-43
        • Whitehouse A.J.O.
        • Holt B.J.
        • Serralha M.
        • Holt P.G.
        • Hart P.H.
        • Kusel M.M.H.
        Maternal vitamin D levels and the autism phenotype among offspring.
        J Autism Dev Disord. 2013; 43: 1495-1504
        • Johnson M.H.
        • Jones E.J.H.
        • Gliga T.
        Brain adaptation and alternative developmental trajectories.
        Dev Psychopathol. 2015; 27: 425-442